

Doc. no. 8223200 rev. D N1000060 Product Specification Aug. 05, 2003

PRODUCT SPECIFICATION

FOR

SCA60C: N1000060

Function	Signature	Date
Originator	ML	5 Aug 2003
Engineering		
Quality		
Marketing		
Production		

Document Change Control

Version	Date	Change description	ECN #	Author
Prelim	Nov. 9, 2001	Preliminary Release		JoH
	Feb 6, 2002	2002 Specification table updated		
		 items removed 		HAM
		 items re-specified 		
		 product number SCA60C: N1000060 		
	March 14, 02	Document number, Official release	2387	HS
	May 7, 2002	Min. Temp25°C, Max. temp. +75°C	2424	HS
	March 14, 03	Max. Temp40°C, Max. temp. +85°C	2631	ML
	Aug 05, 03	Update VTI logo ;		ML
	-	Typing error fixed		

Table of Contents

1	Gene	eral description	4
	1.1	Block diagram	4
	1.2	SCA60C: N1000060 Accelerometer Features	4
2	Elect	trical specifications	5
	2.1	Electrical Connection	5
	2.2	Absolute maximum ratings	5
	2.3	Electrical Specification, N1000060:	6
3	Mech	nanical specification (Reference only)	8
	3.1	Dimensions (Reference only)	8
4	Mou	nting	9

1 General description

The SCA60C: N1000060 accelerometer consists of a silicon bulk micro machined sensing element chip and a signal conditioning ASIC. The chips are mounted on a lead-frame and wire bonded to appropriate contacts. The encapsulation process is a standard semiconductor transfer molding process. The sensor has 8 SMD legs (Gull-wing type).

1.1 Block diagram

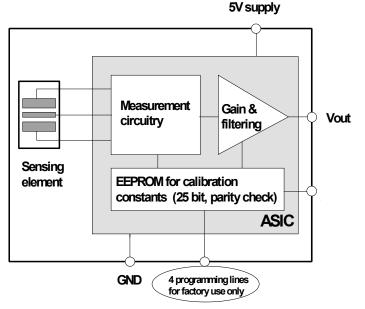
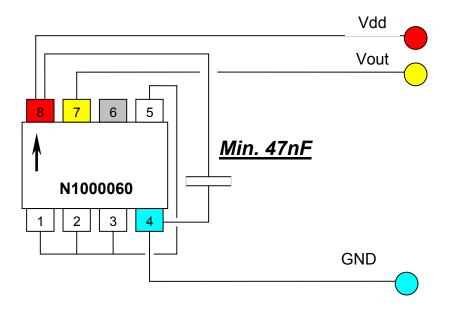


Figure 1. Block diagram of the N1000060

1.2 SCA60C: N1000060 Accelerometer Features

- Single +5V supply
- Low current consumption (2mA typ.)
- Ratiometric output in relation to supply voltage (Vdd = 4.75....5.25V)
- Enhanced failure detection features
 - Memory parity check during power up, and self-test cycle.
 - Built in connection failure detection.
- Wide load drive capability (≥ 20 kOhm, ≤ 20 nF)
- True DC response.



2 Electrical specifications

2.1 Electrical Connection

The following is minimum requirement for electrical interface to the N1000060. If over-voltage or reverse polarity protection is needed, please contact VTI Technologies Oy for application information.

Pins 1, 2, 3 and 5 are connected together.

Pin #	Pin Name	Function
1	CLK	Data shift clock (Factory only)
2	C1	(Factory only)
3	MODE	Mode control input (Factory only)
4	GND	Negative supply voltage (V _{SS})
5	PGM	Programming voltage (Factory only)
6	ST	(Factory only)
7	VOUT	Sensor output voltage
8	VDD	Positive supply voltage (V _{DD})

2.2 Absolute maximum ratings

Supply voltage (V _{DD})	-0.3 V to +7.0V
Voltage at input / output pins	-0.3V to (V _{DD} + 0.3V)
Voltage at PGM and MODE pin	-0.3V to + 0.3V
Storage temperature	-55°C to +125°C
Operating temperature	-40°C to +125°C
Mechanical shock	Drop from 2 meters on a concrete surface. Powered or non- powered. Must be in the final product or in the shipping package.

2.3 Electrical Specification, N1000060:

Parameter	Condition	Min.	Тур	Max.	Units
Measuring range ⁽¹	Nominal	-1.0		+1.0	g ⁽²
Supply voltage Vdd		4.5	5.0	5.5	V
Current consumption	Vdd = 5 V; No load		2.0	4.0	mA
Operating temperature	Performance specified	- 40		+ 85	°C
Resistive output load	at temperatures Vout to Vdd or Vss	20			kohm
Capacitive load	Vout to Vdd or Vss	20		20	nF
Min. output voltage; Vdd = 5V	20k from Vout to Vdd	0		0.25	V
Max. output voltage; Vdd = 5V	20k from Vout to Vss	4.75		5.00	V
Offset (Output at 0g) (3, 12	@ room temperature		0.5 x Vdd		V
	@ Vdd = 5V		2.5		V
Sensitivity (4, 12	@ room temperature		0.4 x Vdd		V/g
	@ Vdd = 5V		2		V/g
Offset Error (Output at 0g) (5, 12	- 40 + 85°C	-200	0	+200	mg
Sensitivity error (6, 12	- 40 + 85°C	-5	0	+5	%
Typical non-linearity ⁽⁷	Range = -1g+1g	-20		+20	mg
Frequency response -3dB ⁽⁸		20		80	Hz
Ratiometric error ⁽⁹	Vdd = 4.755.25V	-2		2	%
Cross-axis sensitivity (10	@ room temperature			5	%
Output noise	Density at 20 Hz ⁽¹¹		20		ug/sqrt(Hz)
Start-up delay	Reset and parity check			10	ms

Doc. no. 8223200 rev. D N1000060 Product Specification

- Note 1. The measuring range is limited only by the sensitivity, offset and supply voltage rails of the device
- Note 2. 1g=9.82m/S²
- Note 3. Offset specified as Voffset = Vout(0g) [V]. See note 12
- Note 4. Sensitivity specified as Vsens = {Vout(+1g) Vout(-1g)}/2 [V/g]. See note 12
- Note 5. Offset error specified as Offset Error = {Vout(0g)-Vdd/2} / Vsens [g] Vsens = Nominal sensitivity Vdd/2= Nominal offset See note 12
- Note 6. Sensitivity error specified as Sensitivity Error = { [Vout(+1g)-Vout(-1g)] / 2-Vsens} / Vsens x 100% [%] Vsens = Nominal sensitivity See note 12
- Note 7. From straight line through -1g and +1g
- Note 8. The frequency response is determined by the sensing element's internal gas damping. The output has true DC (0Hz) response.
- Note 9. The ratiometric error is specified as

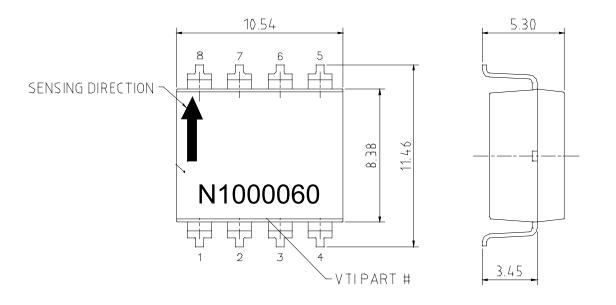
$$RE = 100\% \times \left(1 - \frac{Vout(@Vx) \times \frac{5.00V}{Vx}}{Vout(@5V)}\right)$$

- Note 10. The cross-axis sensitivity determines how much acceleration, perpendicular to the measuring axis, couples to the output. The total cross-axis sensitivity is the geometric sum of the sensitivities of the two axes, which are perpendicular to the measuring axis.
- Note 11. In addition, supply voltage noise couples to the output due to the ratiometric nature of the accelerometer. DC..4kHz < 5mVrms
- Note 12. Measuring positions

+1g position

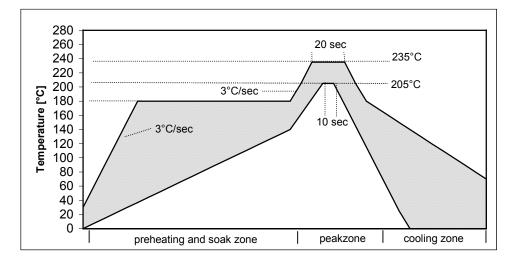
0g position

-1g position

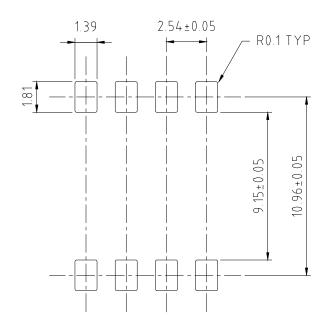


3 Mechanical specification (Reference only)

Lead frame material: Plating: Solderability: Copper per Olin C-194 Sulfamate Nickel per QQ-N-290 followed by Palladium Per MIL-STD_202F, Method 208G


3.1 Dimensions (Reference only)

4 Mounting


The SCA60C:N1000060 is suitable for mounting with normal SMD pick-and-place equipment. Recommended <u>body</u> temperature profile during reflow soldering:

Note. Preheating time and temperatures according to solder paste manufacturer. Component body temperature during the soldering should be measured from the top of the part.

Maximum soldering temperature is 235°C/20sec.

Recommended PCB lay-out

Notes:

- It is important that the part is parallel to the PCB plane and that there is no angular alignment error from intended measuring direction during assembly process.
 - 1° mounting alignment error will increase the cross-axis sensitivity by 1.7%
 - 1° mounting alignment error will change the output by 17mg
- To achieve the highest accuracy and to minimize resonances it is recommended to glue the accelerometer to the PCB before soldering
- Wave soldering is not recommended.
- A supply voltage by-pass capacitor (>47nF) is recommended
- Please note the picture below, which provides information on how the output of the accelerometer behaves in different circumstances, when assembled in a different position in earth's gravity field.

Output voltage polarity vs. position		
	V1 < V2=2.5V @ 0g < V3	